
Distributional Semantics in R with the ‘wordspace’
Package
Stefan Evert
1 April 2016

Distributional semantic models (DSMs) represent the meaning of a target term (which can be a word
form, lemma, morpheme, word pair, etc.) in the form of a feature vector that records either co-occurrence
frequencies of the target term with a set of feature terms (term-term model) or its distribution across textual
units (term-context model). Such DSMs have become an indispensable ingredient in many NLP applications
that require flexible broad-coverage lexical semantics.

Distributional modelling is an empirical science. DSM representations are determined by a wide range of
parameters such as size and type of the co-occurrence context, feature selection, weighting of co-occurrence
frequencies (often with statistical association measures), distance metric, dimensionality reduction method
and the number of latent dimensions used. Despite recent efforts to carry out systematic evaluation studies,
the precise effects of these parameters and their relevance for different application settings are still poorly
understood.

The wordspace package aims to provide a flexible, powerful and easy to use “interactive laboratory” that
enables its users to build DSMs and experiment with them, but that also scales up to the large models
required by real-life applications.

Further background information and references can be found in:

Evert, Stefan (2014). Distributional semantics in R with the wordspace package. In Proceedings
of COLING 2014, the 25th International Conference on Computational Linguistics: System
Demonstrations, pages 110–114, Dublin, Ireland.

Before continuing with this tutorial, load the package with

library(wordspace)

Input formats

The most general representation of a distributional model takes the form of a sparse matrix, with entries
specified as a triplet of row label (target term), column label (feature term) and co-occurrence frequency.
A sample of such a table is included in the package under the name DSM_VerbNounTriples_BNC, listing
syntactic verb-noun co-occurrences in the British National Corpus:

noun rel verb f mode
338032 exchange subj begin 10 written
702570 pattern subj break 6 written
1238116 casualty obj sustain 5 written
1495496 force obj feel 45 written
1531186 government obj assure 7 written
1639598 kitchen obj take 5 written
1704102 material obj produce 171 written
1886882 progress obj chart 30 written
2064903 status obj enhance 21 written
2110292 tea obj sell 6 written

1

The wordspace package creates DSM objects from such triplet representations, which can easily be imported
into R from a wide range of file and database formats. Ready-made import functions are provided for
TAB-delimited text files (as used by DISSECT), which may be compressed to save disk space, and for
term-document models created by the text-mining package tm.

The native input format is a pre-compiled sparse matrix representation generated by the UCS toolkit. In this
way, UCS serves as a hub for the preparation of co-occurrence data, which can be collected from dependency
pairs, extracted from a corpus indexed with the IMS Corpus Workbench or imported from various other
formats.

Creating a DSM

The first step in the creation of a distributional semantic model is the compilation of a co-occurrence matrix.
Let us illustrate the procedure for verb-noun co-occurrences from the written part of the British National
Corpus. First, we extract relevant rows from the table above.

Triples <- subset(DSM_VerbNounTriples_BNC, mode == "written")

Note that many verb-noun pairs such as (walk, dog) still have multiple entries in Triples: dog can appear
either as the subject or as the object of walk.

subset(Triples, noun == "dog" & verb == "walk")

noun rel verb f mode
295011 dog subj walk 20 written
1398669 dog obj walk 87 written

There are two ways of dealing with such cases: we can either add up the frequency counts (a dependency-filtered
model) or treat “dog-as-subject” and “dog-as-object” as two different terms (a dependency-structured model).
We opt for a dependency-filtered model in this example – can you work out how to compile the corresponding
dependency-structured DSM in R, either for verbs of for nouns as target terms?

The dsm constructor function expects three vectors of the same length, containing row label (target term),
column label (feature term) and co-occurrence count (or pre-weighted score) for each nonzero cell of the
co-occurrence matrix. In our example, we use nouns as targets and verbs as features. Note the option
raw.freq=TRUE to indicate that the matrix contains raw frequency counts.

VObj <- dsm(target=Triples$noun, feature=Triples$verb, score=Triples$f, raw.freq=TRUE)
dim(VObj)

[1] 10940 3149

The constructor automatically computes marginal frequencies for the target and feature terms by summing
over rows and columns of the matrix respectively. The information is collected in data frames VObj$rows
and VObj$cols, together with the number of nonzero elements in each row and column:

subset(VObj$rows, rank(-f) <= 6) # 6 most frequent nouns

term nnzero f
5395 man 907 51976
6491 people 911 72832

2

http://clic.cimec.unitn.it/composes/toolkit/
http://www.collocations.de/software.html
http://cwb.sourceforge.net/

6951 problem 402 29002
8928 thing 442 34104
8975 time 658 46500
9613 way 738 46088

This way of computing marginal frequencies is appropriate for syntactic co-occurrence and term-document
models. In the case of surface co-occurrence based on token spans, the correct marginal frequencies have to
be provided separately in the rowinfo= and colinfo= arguments (see ?dsm for details).

The actual co-occurrence matrix is stored in VObj$M. Since it is too large to display on screen, we extract
the top left corner with the head method for DSM objects. Note that you can also use head(VObj, Inf) to
extract the full matrix.

head(VObj)

6 x 6 sparse Matrix of class "dgCMatrix"
be have say give take achieve
aa 7 5 12 . . .
abandonment 14
abbey 45 13 6 . . .
abbot 23 7 10 5 5 .
abbreviation 9
abc 6

The DSM parameters

Rows and columns with few nonzero cells provide unreliable semantic information and can lead to numerical
problems (e.g. because a sparse association score deletes the remaining nonzero entries). It is therefore
common to apply frequency thresholds both on rows and columns, here in the form of requiring at least 3
nonzero cells. The option recursive=TRUE guarantees that both criteria are satisfied by the final DSM when
rows and columns are filtered at the same time (see the examples in ?subset.dsm for an illustration).

VObj <- subset(VObj, nnzero >= 3, nnzero >= 3, recursive=TRUE)
dim(VObj)

[1] 6087 2139

If you want to filter only columns or rows, you can pass the constraint as a named argument: subset=(nnzero
>= 3) for rows and select=(nnzero >= 3) for columns.

The next step is to weight co-occurrence frequency counts. Here, we use the simple log-likelihood association
measure with an additional logarithmic transformation, which has shown good results in evaluation studies.
The wordspace package computes sparse (or “positive”) versions of all association measures by default,
setting negative associations to zero. This guarantees that the sparseness of the co-occurrence matrix is
preserved. We also normalize the weighted row vectors to unit Euclidean length (normalize=TRUE).

VObj <- dsm.score(VObj, score="simple-ll", transform="log", normalize=TRUE, method="euclidean")

Printing a DSM object shows information about the dimensions of the co-occurrence matrix and whether it
has already been scored. Note that the scored matrix does not replace the original co-occurrence counts, so
dsm.score can be executed again at any time with different parameters.

3

VObj

Distributional Semantic Model with 6087 rows x 2139 columns
* raw co-occurrence matrix M available
- sparse matrix with 191.4k / 13.0M nonzero entries (fill rate = 1.47%)
- in canonical format
- known to be non-negative
- sample size of underlying corpus: 5010.1k tokens
* scored matrix S available
- sparse matrix with 153.7k / 13.0M nonzero entries (fill rate = 1.18%)
- in canonical format
- known to be non-negative

Most distributional models apply a dimensionality reduction technique to make data sets more manageable and
to refine the semantic representations. A widely-used technique is singular value decomposition (SVD). Since
VObj is a sparse matrix, dsm.projection automatically applies an efficient algorithm from the sparsesvd
package.

VObj300 <- dsm.projection(VObj, method="svd", n=300)
dim(VObj300)

[1] 6087 300

VObj300 is a dense matrix with 300 columns, giving the coordinates of the target terms in 300 latent
dimensions. Its attribute "R2" shows what proportion of information from the original matrix is captured by
each latent dimension.

plot(attr(VObj300, "R2"), type="h", xlab="latent dimension", ylab="R2")

0 50 100 150 200 250 300

0.
00

0.
04

0.
08

latent dimension

R
2

Using DSM representations

The primary goal of a DSM is to determine “semantic” distances between pairs of words. The arguments to
pair.distances can also be parallel vectors in order to compute distances for a large number of word pairs
efficiently.

4

pair.distances("book", "paper", VObj300, method="cosine")

book/paper
45.07627

By default, the function converts similarity measures into an equivalent distance metric – the angle between
vectors in the case of cosine similarity. If you want the actual similarity values, specify convert=FALSE:

pair.distances("book", "paper", VObj300, method="cosine", convert=FALSE)

book/paper
0.7061649

We are often interested in finding the nearest neighbours of a given term in the DSM space:

nearest.neighbours(VObj300, "book", n=14) # reduced space

paper article poem works magazine novel text
45.07627 51.92011 53.48027 53.91556 53.94824 54.40451 55.13910
guide newspaper document item essay leaflet letter
55.27027 55.51492 55.62521 56.28246 56.29539 56.49145 58.04178

The return value is actually a vector of distances to the nearest neighbours, labelled with the corresponding
terms. Here is how you obtain the actual neighbour terms:

nn <- nearest.neighbours(VObj, "book", n=15) # unreduced space
names(nn)

[1] "paper" "guide" "works" "novel" "magazine"
[6] "article" "document" "poem" "diary" "essay"
[11] "item" "text" "booklet" "leaflet" "newspaper"

The neighbourhood plot visualizes nearest neighbours as a semantic network based on their mutual distances.
This often helps interpretation by grouping related neighbours. The network below shows that book as a
text type is similar to novel, essay, poem and article; as a form of document it is similar to paper, letter and
document; and as a publication it is similar to leaflet, magazine and newspaper.

nn.mat <- nearest.neighbours(VObj300, "book", n=15, dist.matrix=TRUE)
plot(nn.mat)

5

book
paper

articlepoem works

magazine

novel

text

guide

newspaper

document

item

essay

leaflet

letter

diary

A straightforward way to evaluat distributional representations is to compare them with human judgements
of the semantic similarity between word pairs. The wordspace package includes to well-known data sets of
this type: Rubenstein-Goodenough (RG65) and WordSim353 (a superset of RG65 with judgements from new
test subjects).

word1 word2 score
5 autograph_N shore_N 0.06
15 monk_N slave_N 0.57
25 forest_N graveyard_N 1.00
35 cemetery_N mound_N 1.69
45 brother_N monk_N 2.74
55 autograph_N signature_N 3.59
65 gem_N jewel_N 3.94

There is also a ready-made evaluation function, which computes Pearson and rank correlation between the
DSM distances and human subjects. The option format="HW" adjusts the POS-disambiguated notation for
terms in the data set (e.g. book_N) to the format used by our distributional model (book).

eval.similarity.correlation(RG65, VObj300, convert=FALSE, format="HW")

rho p.value missing r r.lower r.upper
RG65 0.3076154 0.01267694 20 0.3735435 0.1426399 0.5658865

Evaluation results can also be visualized in the form of a scatterplot with a trend line.

plot(eval.similarity.correlation(RG65, VObj300, convert=FALSE, format="HW", details=TRUE))

6

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

RG65

human rating

di
st

rib
ut

io
na

l m
od

el

|rho| = 0.308, p = 0.0127, |r| = 0.143 .. 0.566 (20 pairs not found)

The rank correlation of 0.308 is very poor, mostly due to the small amount of data on which our DSM is
based. Much better results are obtained with pre-compiled DSM vectors from large Web corpus, which are
also included in the package. Note that target terms are given in a different format there (which corresponds
to the format in RG65).

plot(eval.similarity.correlation(RG65, DSM_Vectors, convert=FALSE, details=TRUE))

7

0 1 2 3 4

0.
2

0.
4

0.
6

0.
8

1.
0

RG65

human rating

di
st

rib
ut

io
na

l m
od

el

|rho| = 0.687, p = 0.0000, |r| = 0.520 .. 0.791

Advanced techniques

Schütze (1998) used DSM representations for word sense disambiguation (or, more precisely, word sense
induction) based on a clustering of the sentence contexts of an ambiguous word. The wordspace package
includes a small data set with such contexts for a selection of English words. Let us look at the noun vessel
as an example, which has two main senses (“ship” and “blood vessel”):

Vessel <- subset(SemCorWSD, target == "vessel" & pos == "n")
table(Vessel$gloss)

##
a craft designed for water transportation
6
a tube in which a body fluid circulates
6

Sentence contexts are given as tokenized strings ($sentence), in lemmatized form ($hw) and as lemmas
annotated with part-of-speech codes ($lemma). Choose the version that matches the representation of target
terms in your DSM.

sense sentence
vessel.n.02 The spraying operation was conducted from the rear deck of a small Naval vessel , cruising two miles off-shore and vertical to an on-shore breeze .
vessel.n.01 Such a dual derivation was strikingly demonstrated during the injection process where initial filling would be noted to occur in several isolated pleural vessels at once .
vessel.n.01 This vessel could be followed to the parenchyma where it directly provided bronchial arterial blood to the alveolar capillary bed (figs. 17 , 18) .

8

sense sentence
vessel.n.01 However , this artery is known to be a nutrient vessel with a distribution primarily to the proximal airways and supportive tissues of the lung .
vessel.n.01 It is distinctly possible , therefore , that simultaneous pressures in all three vessels would have rendered the shunts inoperable and hence , uninjectable .
vessel.n.01 A careful search failed to show occlusion of any of the mesenteric vessels .
vessel.n.01 Some of the small vessels were filled with fibrin thrombi , and there was extensive interstitial hemorrhage .
vessel.n.02 He appeared to be peering haughtily down his nose at the crowded and unclean vessel that would carry him to freedom .
vessel.n.02 However , we sent a third vessel out , a much smaller and faster one than the first two .
vessel.n.02 Upon reaching the desired speed , the automatic equipment would cut off the drive , and the silent but not empty vessel would hurl towards the star which was its journey ’s end .
vessel.n.02 Then , after slowing the vessel considerably , the drive would adjust to a one gee deceleration .
vessel.n.02 To round out the blockading force , submarines would be needed - to locate , identify and track approaching vessels .

Following Schütze, each context is represented by a centroid vector obtained by averaging over the DSM
vectors of all context words.

centroids <- context.vectors(DSM_Vectors, Vessel$lemma, row.names=Vessel$id)

This returns a matrix of centroid vectors for the 12 sentence contexts of vessel in the data set. The vectors
can now be clustered and analyzed using standard R functions. Partitioning around medoids (PAM) has
shown good and robust performance in evaluation studies.

library(cluster) # clustering algorithms of Kaufman & Rousseeuw (1990)
res <- pam(dist.matrix(centroids), 2, diss=TRUE, keep.diss=TRUE)
plot(res, col.p=factor(Vessel$sense), shade=TRUE, which=1, main="WSD for 'vessel'")

−20 −10 0 10 20

−
20

−
10

0
10

20

WSD for 'vessel'

Colours in the plot above indicate the gold standard sense of each instance of vessel. A confusion matrix
confirms perfect clustering of the two senses:

9

table(res$clustering, Vessel$sense)

vessel.n.01 vessel.n.02
0 6
6 0

We can also use a pre-defined function for the evaluation of clustering tasks, which is convenient but does not
produce a visualization of the clusters. Note that the “target terms” of the task must correspond to the row
labels of the centroid matrix, which we have set to sentence IDs (Vessel$id) above.

eval.clustering(Vessel, M=centroids, word.name="id", class.name="sense")

purity entropy missing
Vessel 100 0 0

As a final example, let us look at a simple approach to compositional distributional semantics, which computes
the compositional meaning of two words as the element-wise sum or product of their DSM vectors.

mouse <- VObj300["mouse",] # extract row vectors from matrix
computer <- VObj300["computer",]

The nearest neighbours of mouse are problematic, presumably because the type vector represents a mixture
of the two senses that is not close to either meaning in the semantic space.

nearest.neighbours(VObj300, "mouse", n=12)

prop isotope carbon serum transformer sponge
53.72837 55.08473 55.29022 56.84607 57.20004 57.25144
thermometer hoop loudspeaker razor mount implant
57.33371 57.38682 57.38682 57.43123 57.47889 57.49171

By adding the vectors of mouse and computer, we obtain neighbours that seem to fit the “computer mouse”
sense very well:

nearest.neighbours(VObj300, mouse + computer, n=12)

mouse computer program processor software tool
36.69755 41.47028 54.15183 54.37412 54.55897 55.07898
machine transistor mix keyboard prop sponge
55.74764 58.51586 58.93807 59.15682 59.18378 59.34185

Note that the target is specified as a distributional vector rather than a term in this case. Observations from
the recent literature suggest that element-wise multiplication is not compatible with non-sparse SVD-reduced
DSMs, so it is not surprising to find completely unrelated nearest neighbours in our example:

nearest.neighbours(VObj300, mouse * computer, n=12)

picasso stein clamp ivory copper crane carter bruce
44.14916 44.84104 45.81757 46.05523 48.03508 48.82008 51.12203 51.38382
amaranth fielding bowman griffin
51.56460 51.60627 51.62372 51.62551

10

	Input formats
	Creating a DSM
	The DSM parameters
	Using DSM representations
	Advanced techniques

